Combined optical–electrical finite- element simulations of thin-film solar cells with homogeneous and nonhomogeneous intrinsic layers
نویسندگان
چکیده
A two-dimensional finite-element model was developed to simulate the optoelectronic performance of thin-film, p-i-n junction solar cells. One or three p-i-n junctions filled the region between the front window and back reflector; semiconductor layers were made from mixtures of two different alloys of hydrogenated amorphous silicon; empirical relationships between the complex-valued relative optical permittivity and the bandgap were used; a transparent-conducting-oxide layer was attached to the front surface of the solar cell; and a metallic reflector, either flat or periodically corrugated, was attached to the back surface. First, frequency-domain Maxwell postulates were solved to determine the spatial absorption of photons and thus the generation of electron–hole pairs. The AM1.5G solar spectrum was taken to represent the incident solar flux. Second, drift-diffusion equations were solved for the steady-state electron and hole densities. Numerical results indicate that increasing the number of p-i-n junctions from one to three may increase the solar-cell efficiency by up to 14%. In the case of single p-i-n junction solar cells, our simulations indicate that efficiency may be increased by up to 17% by incorporating a periodically corrugated back reflector (as opposed to a flat back reflector) and by tailoring the bandgap profile in the i layer. © The Authors. Published by SPIE under a Creative Commons Attribution 3.0 Unported License. Distribution or reproduction of this work in whole or in part requires full attribution of the original publication, including its DOI. [DOI: 10.1117/1.JPE.6.025502]
منابع مشابه
Fabrication Of Cu(In,Ga)Se2 Solar Cells With In2S3 Buffer Layer By Two Stage Process
Cu(In,Ga)Se2 thin films (CIGS) on metallic substrate (titanium, molybdenum, aluminum, stainless steel) were prepared by a two-step selenization of Co-evaporated metallic precursors in Se-containing environment under N2 gas flow. Structural properties of prepared thin film were studied. To characterize the optical quality and intrinsic defect nature low-temperature photoluminescence, were perfor...
متن کاملImproving the optical properties of thin film plasmonic solar cells of InP absorber layer using nanowires
In this paper, a thin-film InP-based solar cell designed and simulated. The proposed InP solar cell has a periodic array of plasmonic back-reflector, which consists of a silver layer and two silver nanowires. The indium tin oxide (ITO) layer also utilized as an anti-reflection coating (ARC) layer on top. The design creates a light-trapping structure by using a plasmonic back-reflector and an an...
متن کاملIntroducing nanostructure patterns for performance enhancement in PbS colloidal quantum dot solar cells
With attention to the thin film structure of colloidal quantum dot solar cells, in this paper in order to improvement of active layer absorption of them, we have proposed the use of nanostructure pattern for enhancement of their performance. For this purpose we have presented suitable nano hemisphare patterns in colloidal quantum dot solar cells for light trapping in absorption layer. Then with...
متن کاملDesign of Silicon Nano-Bars Anti-Reflection Coating to Enhance Thin Film Solar Cells Efficiency
In this paper a novel anti-reflection (AR) coating based on silicon nano-bars is designed and its impact on the performance of crystalline silicon (c-Si) thin-film solar cells is extensively studied. Silicon nano-bars with optimized size and period are embedded on top of the active layer, under a 100nm Si3N4 layer. As a result of the proposed layer stack, an inhomogeneous intermediate layer wit...
متن کاملAdvances in Thin-Film Si Solar Cells by Means of SiOx Alloys
The conversion efficiency of thin-film silicon solar cells needs to be improved to be competitive with respect to other technologies. For a more efficient use of light across the solar spectrum, multi-junction architectures are being considered. Light-management considerations are also crucial in order to maximize light absorption in the active regions with a minimum of parasitic optical losses...
متن کامل